C.U.SHAH UNIVERSITY Summer Examination-2017

Subject Name: Advanced Algebra

Subject Code:	5SC04AAE1	Branch: M.Sc.(Mathematics)	
Semester: 4	Date: 15/04/2017	Time: 10:30 To 01:30	Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1 Attempt the Following questions.

a) The sequence $0 \to M \xrightarrow{f} N$ is exact if and only if f is _____. (01)

(07)

(01)

(14)

(14)

- **b**) State first isomorphism theorem.
- c) True or False: The additive group (Q, +) is finitely generated. (01)
- d) Prove that composition of two module homomorphism is homomorphism. (02)
- e) Let *M* be *R* module. Then prove that $0 \to M \to 0$ is exact if and only if M = 0. (02)

Q-2 Attempt all questions

Q-2

- a) State and prove second isomorphism theorem. (07)
- b) Prove that every internal direct sum of modules is also an external direct sum. (05)
- c) Prove that an R-module M is simple if and only if it is cyclic and every non zero (02) element is its generator.

OR

Attempt all questions(14)a) State and prove correspondence theorem.(07)b) Let M be a simple R module. Show that the End(M) is a division ring.(05)c) Show that the Z module Q is not free.(02)

Q-3 Attempt all questions

a)	Prove that a short exact sequence $0 \to M_1 \xrightarrow{f} M \xrightarrow{g} M_2 \to 0$ splits and	(05)
	$M \cong M_1 \bigoplus M_2$ if and only if there exists $h: M \to M_1$ with $hf = 1_{M_1}$.	

b) Prove that if M is simple R module, then M is isomorphic to R/I for some (05) maximal left ideal I of R.

Page 1 || 2

	c)	Let <i>M</i> , <i>N</i> be <i>R</i> module and $\varphi: M \to N$ be a module homomorphism then prove	(04)
		that the range of φ is submodule of N.	
		OR	
Q-3		Attempt all Questions	(14)
C	a)	If M is a module over a ring R, then prove that $HOM_R(R, M)$ is an R module with	(05)
	/	the action of R on $HOM_R(R, M)$ given by	
		$(rf)(x) = f(xr)$, where $f \in HOM_R(R, M)$ and $r, x \in R$.	
	b)	Prove that let R be a commutative ring with identity the mapping	(05)
	D)	$M_n(R) \to M_n(R)$ defined by $A \to A^t$ is an R module isomorphism.	(03)
			(04)
	c)	Show that $\langle X \rangle_s = \langle X \rangle_l$, whenever <i>R</i> has identity. If we remove identity from <i>R</i> then also a particle to $X > R$ has identity.	(04)
		<i>R</i> then above result is true? Justify.	
0.4		SECTION – II	
Q-4		Attempt the Following questions.	(07)
	a)	True or False: 2 Z over 2 Z module is free.	(01)
	b)	True or False: Any cyclic module over principal ideal domain is simple.	(01)
	c)	Define: Free module.	(01)
	d)	Consider Z as a Z module then prove that $B = \{1\}$ is a basis for Z .	(02)
	e)	Prove that every commutative ring with identity has invariant rank property.	(02)
Q-5		Attempt all questions	(14)
	a)	If <i>M</i> is finitely generated module over principal ideal domain <i>R</i> then show	(07)
		that $M = T(M) \oplus F$, where F is a free module of finite rank.	
	b)	Let <i>D</i> be division ring and <i>M</i> be a <i>D</i> module then prove that <i>M</i> is free <i>D</i> module.	(07)
		OR	
Q-5		Attempt all Questions	(14)
C	a)	Let R be a ring and $M_1, M_2, M_3, \dots, M_n$ be R module. Then prove that	(07)
	,	$M \cong M_1 \oplus M_2 \oplus M_3 \oplus \oplus M_n$ if and only if for each $l \in N$ there are R module	
		homomorphisms $P_l: M \to M_l$ and $U_l: M_l \to M$ such that	
		i) $P_l U_l = 1_{M_l}$	
		ii) $P_k U_l = 0$ for $k \neq l$	
	L .)	iii) $\sum_{l=1}^{n} U_l P_l = 1_M$	(07)
	D)	Define projective and injective module. Prove that a free module is projective.	(07)
0(Attempt all amostions	(14)
Q-6	``	Attempt all questions	(14)
	a)	Let I be a proper ideal of a ring R and M be a free R module with a basis	(07)
		$B = \{x_{\lambda} : \lambda \in \Lambda\}$. Then prove that $\{x_{\lambda} + IM : \lambda \in \Lambda\}$ is a basis for $M IM$.	
	b)	Define invariant rank property. Prove that if M is a module over a division	(07)
		ring D, then D has an invariant rank property.	
		OR	
Q-6		Attempt all Questions	(14)
	a)	Prove that a finitely generated torsion free module over principal ideal domain is	(07)
		free.	
	b)	Prove that let <i>M</i> be a free <i>R</i> module and $B \subset M$. <i>B</i> is a basis of <i>M</i> if and only if	(07)
	-	every element of <i>M</i> can be uniquely written as linear combination of <i>B</i> .	
		· · · ·	

Page 2 || 2

